#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from .superclass import *
[docs]class RandomForest(NormalModel):
"""
Using `Random Forest <https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.html>`_ model to predict the occupancy level
This is a normal supervised learning model.
:parameter train: the labelled ground truth Dataset for training the model
:type train: core.data.dataset.Dataset
:parameter test: the Dataset for testing by using sensor data only
:type test: core.data.dataset.Dataset
:parameter estimator: number of estimators in Random Forest
:type estimator: int
:rtype: numpy.ndarray
:return: Predicted occupancy level corresponding to the test Dataset
"""
def __init__(self, train, test):
from numpy import reshape
# all changeable parameters now store as an editable instance
self.train = train
self.test = test
self.estimator = 200
if len(self.train.occupancy.shape) == 2 and self.train.occupancy.shape[1] == 1:
self.train.change_occupancy(reshape(self.train.occupancy, (self.train.occupancy.shape[0],)))
# the model must have a method called run, and return the predicted result
[docs] def run(self):
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators=self.estimator)
classifier.fit(self.train.data, self.train.occupancy)
predict_occupancy = classifier.predict(self.test.data)
if len(predict_occupancy.shape) == 1:
predict_occupancy.shape += (1,)
return predict_occupancy