API documentation¶
Subpackages¶
- core.data package
- core.evaluation package
- core.model package
- Submodules
- core.model.gaussian_process_classifier module
- core.model.gaussian_process_regression module
- core.model.hidden_markov_model module
- core.model.hmm_core module
- core.model.nn module
- core.model.particle_filtering module
- core.model.random_forest module
- core.model.rnn module
- core.model.snmf module
- core.model.superclass module
- core.model.support_vector_machine module
- Module contents
- core.plot package
- core.preprocessing package
- core.stats package
core.easy_experiment module¶
-
core.easy_experiment.
easy_experiment
(source, target_test, target_retrain=None, domain_adaptive=False, models='all', binary_evaluation=True, evaluation_metrics='all', thread_num=4, remove_time=True, plot=False)[source]¶ A function for researcher to fast test all models on one dataset and evaluate by all metrics
- Parameters
source (core.data.dataset.Dataset) – the source domain with full knowledge for training the model
target_retrain (
None
or core.data.dataset.Dataset) – the labelled ground truth Dataset in the target domain for re-training the modeltarget_test (core.data.dataset.Dataset) – the Dataset in the rest of the target domain for testing by using sensor data only
domain_adaptive (bool) – indicate whether use normal supervised learning model or domain-adaptive semi-supervised learning model
binary_evaluation (bool) – indicate whether use binary evaluation metrics or occupancy count metrics
models (str, list(str)) – choose the models want to use in this experiment. If
'all'
then all model with selected superclass will add to the experiment.evaluation_metrics (str, list(str)) – choose the evaluation metrics want to use in this experiment. If
'all'
then all metrics with selected superclass will add to the experiment.thread_num (int) – the maximum number of threads can use to speed up
remove_time (bool) – decide whether remove the time column when predicting occupancy level
- Return type
- Returns
first is the final score of the metrics by all models, and second is the prediction result
-
core.easy_experiment.
easy_set_experiment
(source_set, target_test_set=None, split_percentage=0.8, target_retrain=None, domain_adaptive=False, models='all', binary_evaluation=True, evaluation_metrics='all', thread_num=4, remove_time=True, plot=False)[source]¶ A function for researcher to fast test all models on all dataset and evaluate by all metrics. Please make sure all keys in source_set, target_test_set, and target_retrain are the same
- Parameters
source_set (dict(str, core.data.dataset.Dataset)) – the set of source domain with full knowledge for training the model
target_retrain (
None
or dict(str, core.data.dataset.Dataset)) – the labelled ground truth Dataset in the target domain for re-training the modeltarget_test_set (dict(str, core.data.dataset.Dataset)) – the set of Datasets in the rest of the target domain for testing by using sensor data only. If
None
then split source domain to get new source domain and target domainsplit_percentage (float) – percentage of the row in the first part
domain_adaptive (bool) – indicate whether use normal supervised learning model or domain-adaptive semi-supervised learning model
binary_evaluation (bool) – indicate whether use binary evaluation metrics or occupancy count metrics
models (str, list(str)) – choose the models want to use in this experiment. If
'all'
then all model with selected superclass will add to the experiment.evaluation_metrics (str, list(str)) – choose the evaluation metrics want to use in this experiment. If
'all'
then all metrics with selected superclass will add to the experiment.thread_num (int) – the maximum number of threads can use to speed up
remove_time (bool) – decide whether remove the time column when predicting occupancy level
plot (bool) – unused
- Return type
list(dict(str, dict(str, dict(str, score))), dict(str, dict(str, numpy.ndarray)))
- Returns
first is the final score of the metrics by all Datasets, all models, and second is the prediction result