Extending the Toolkit¶
In this section we illustrate how the user can extend ODToolkit by adding a new data set, a new occupancy estimation model, and a new evaluation metrics to the toolkit.
Adding a new data set¶
We assume that a data set is a collection of comma separated (csv) files where each file contains data pertaining to a single room within a building. The columns of each file represent different features and its rows correspond to successive timestamps. The labelled occupancy data should be the last column of the csv file (if applicable).
Sample code¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import core
# Load the raw csv file and transform to core.data.dataset.Dataset()
dataset = core.data.import_data("./data-room-1.csv",
time_column_index=1,
room_name="User room 1",
tz=-2)
# Add more rooms into the same data set
dataset += core.data.import_data("./data-room-2.csv",
time_column_index=1,
room_name="User room 2",
tz=-2)
# Preprocess the data set
core.preprocessing.auto_clean(dataset, target_frequency=60)
# After preprocessing, put the data set into specific folder for data sets
core.data.save_dataset(dataset, "./core/data/binary_dataset/user_room")
|
Once the data set is added to the toolkit, you may ask the toolkit to load the data as follows:
dataset = core.data.load_sample("user_room")
Analyzing a data set and using it to evaluate a model¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | import core
# Load a user-defined data set from the package, and remove its time feature
dataset = core.data.load_sample(["user_room"])
time_column_name = dataset["user_room"].feature_mapping[dataset["user_room"].time_column_index]
dataset["user_room"].remove_feature(time_column_name)
# Plot the correlation graph
core.plot.plot_feature_correlation(dataset["user_room"])
# Use Random Forest model to perform occupancy estimation
# Use all binary evaluation metrics to evaluate the model
result = core.evaluation.Result()
result.set_result(core.easy_set_experiment(dataset,
models=["RandomForest"],
evaluation_metrics="all")[0])
# Plot the scores in a bar chart
core.plot.plot_result(result,
dataset="user_room",
threshold="<= 1")
|
Adding a new model¶
To add a new occupancy estimation model to ODToolkit, you must put its code under the folder ./core/model/
.
Template¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
# If you want to put your model into the ODToolkit folder, use this
from .superclass import *
# If you want to put your model into your own folder, use this
from core.model.superclass import *
# Sample for supervised-learning model
class YourModelName(NormalModel):
def __init__(self,
name_for_train_dataset,
name_for_test_dataset):
# all changeable parameters
self.name_for_train_dataset = name_for_train_dataset
self.name_for_test_dataset = name_for_test_dataset
# ... Any other parameters defines here
# the model must have a method called run, and return the predicted result
def run(self):
# Your model goes here
# Use core.data.dataset.Dataset() as data type
# ...
# Result must be a numpy.ndarray with shape of (num_of_rows, 1)
return predict_occupancy
# Sample for domain-adaptive semi-supervised learning model
class YourModelName(DomainAdaptiveModel):
def __init__(self,
name_for_source_dataset,
name_for_target_retrain_dataset, # This could be None
name_for_target_test_dataset):
# all changeable parameters
self.name_for_source_dataset = name_for_source_dataset
self.name_for_target_retrain_dataset = name_for_target_retrain_dataset
self.name_for_target_test_dataset = name_for_target_test_dataset
# ... Any other parameters defines here
# the model must have a method called run, and return the predicted result
def run(self):
# Your model goes here
# Use core.data.dataset.Dataset() as data type
# ...
# Result must be a numpy.ndarray with shape of (num_of_rows, 1)
return predict_occupancy
|
Applying and evaluating the model¶
To run experiments quickly using the default parameter setting:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import core
# Load a sample data set from the package
dataset = core.data.load_sample(["umons-all"])
# Use new model to perform occupancy estimation
# Use all binary evaluation metrics to evaluate the model
result = core.evaluation.Result()
result.set_result(core.easy_set_experiment(dataset,
models=["YourModelName"],
evaluation_metrics="all")[0])
# Plot the scores in a bar chart
core.plot.plot_result(result,
dataset="umons-all",
threshold="<= 1")
|
To change the default parameters:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | import core
# Load a sample data set from the package
dataset = core.data.load_sample("umons-all")
# Create train / test sets
train, test = dataset.split(0.8)
# Select models you want to use
model_set = core.model.NormalModel(train, test, thread_num=1)
model_set.add_model(["YourModelName"])
# Edit the settings of your model
your_model = model_set.models["YourModelName"]
your_model.alpha = 0.5
# Run model to predict occupancy level
model_set_results = model_set.run_all_model()
# Evaluate the result
metrics = core.evaluation.BinaryEvaluation(
model_set_results["YourModelName"], test.occupancy)
evaluation_score = dict()
metrics.get_all_metrics()
evaluation_score["YourModelName"] = metrics.run_all_metrics()
# Plot the result
result = core.evaluation.Result()
result.set_result({"umons-all": evaluation_score})
# Plot the scores in a bar chart
core.plot.plot_result(result,
dataset="umons-all",
threshold="<= 1")
|
Adding a new evaluation metric¶
The procedure to add a new metric is the same as adding a new model.
Template¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
# If you want to put your model into the ODToolkit folder, use this
from .superclass import *
# If you want to put your model into your own folder, use this
from core.evaluation.superclass import *
# If evaluate occupancy count estimation, use OccupancyEvaluation as superclass
# If evaluate binary estimation, use BinaryEvaluation as superclass
class YourMetricName(OccupancyEvaluation):
def __init__(self,
name_for_predict_result,
name_for_ground_truth):
# all changeable parameters
self.name_for_predict_result = name_for_predict_result
self.name_for_ground_truth = name_for_ground_truth
# ... Any other parameters defines here
# the model must have a method called run, and return the score
def run(self):
# Your model goes here
# Use two (x, 1) numpy.ndarrays as data type
# ...
# Result must be one value
return score
|
Using the new metric to evaluate models¶
To evaluate a model using the new metric:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import core
# Load a sample data set from the package
dataset = core.data.load_sample(["umons-all"])
# Use RandomForest model to perform occupancy estimation
# Use all binary evaluation metrics to evaluate the model
result = core.evaluation.Result()
result.set_result(core.easy_set_experiment(dataset,
models=["RandomForest"],
evaluation_metrics=["YourMetricName"])[0])
# Plot the scores in a bar chart
core.plot.plot_result(result,
dataset="umons-all",
threshold="<= 1")
|
To change the default parameters:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | import core
# Load a sample data set from the package
dataset = core.data.load_sample("umons-all")
# Create train / test sets
train, test = dataset.split(0.8)
# Select models you want to use
model_set = core.model.NormalModel(train, test, thread_num=1)
model_set.add_model(["RandomForest"])
# Run model to predict occupancy level
model_set_results = model_set.run_all_model()
# Evaluate the result
metrics = core.evaluation.BinaryEvaluation(
model_set_results["RandomForest"], test.occupancy)
evaluation_score = dict()
metrics.add_metrics(["YourMetricName"])
# Change your metric
your_metric = metrics.metrics["YourMetricName"]
your_metric.alpha = 0.5
evaluation_score["RandomForest"] = metrics.run_all_metrics()
# Plot the result
result = core.evaluation.Result()
result.set_result({"umons-all": evaluation_score})
# Plot the scores in a bar chart
core.plot.plot_result(result,
dataset="umons-all",
threshold="<= 1")
|