Source code for core.model.gaussian_process_regression

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from .superclass import *


[docs]class GPR(NormalModel): """ Using `Gaussian Process Regressor <https://scikit-learn.org/stable/modules/generated/sklearn. gaussian_process.GaussianProcessRegressor.html>`_ model to predict the occupancy level This is a normal supervised learning model. :parameter train: the labelled ground truth Dataset for training the model :type train: core.data.dataset.Dataset :parameter test: the Dataset for testing by using sensor data only :type test: core.data.dataset.Dataset :rtype: numpy.ndarray :return: Predicted occupancy level corresponding to the test Dataset """ def __init__(self, train, test): self.train = train self.test = test
[docs] def run(self): import numpy as np from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF X = np.array(self.train.data) Y = np.array(self.train.occupancy).flatten() kernel = 1**2*RBF(length_scale=1.0) gp = GaussianProcessRegressor(kernel=kernel, optimizer=None).fit(X, Y) predict_occupancy = gp.predict(np.array(self.test.data)) return np.reshape(predict_occupancy, (-1,1))