Source code for core.evaluation.mase

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from .superclass import *


[docs]class MASE(OccupancyEvaluation): """ Calculate the `Mean Absolute Scaled Error <https://en.wikipedia.org/wiki/Mean_absolute_scaled_error>`_ between prediction and ground truth :parameter predict: the predicted values from occupancy estimation models :type predict: numpy.ndarray :parameter truth: the ground truth value from the Dataset :type truth: numpy.ndarray :rtype: float :return: MASE score """ def __init__(self, predict, truth): self.predict = predict self.truth = truth
[docs] def run(self): mae = abs(self.truth - self.predict).mean() denominator = self.truth.shape[0] / (self.truth.shape[0] - 1) denominator *= abs(self.truth[1:] - self.truth[:-1]).mean() return mae / denominator