core.model package ================== This package contains classes that pertain to the occupancy estimation models. All user-defined models should be put here. core.model.superclass module ---------------------------- .. py:class:: core.model.superclass.NormalModel(train, test, thread_num=4) :noindex: .. py:class:: core.model.superclass.DomainAdaptiveModel(source, target_retrain, target_test, thread_num=4) :noindex: :class:`~core.model.superclass.NormalModel` and :class:`~core.model.superclass.DomainAdaptiveModel` are the superclasses for all occupancy estimation models. :class:`~core.model.superclass.NormalModel` is the superclass for models that are designed for estimating binary occupancy states. In contrast, :class:`~core.model.superclass.DomainAdaptiveModel` is the superclass for models that are designed for estimating occupancy counts. They both have four methods: .. py:method:: get_all_model() :noindex: .. py:method:: add_model(list_of_model) :noindex: .. py:method:: remove_model(list_of_model) :noindex: .. py:method:: run_all_model() :noindex: These methods can be used to return estimations and allow the user to modify settings for a specific model at any time. .. code-block:: python import core # Load a sample data set from the package dataset = core.data.load_sample("umons-all") # Create train / test sets train, test = dataset.split(0.8) # ===== Sample Start Here ===== # Select models you want to use model_set = core.model.NormalModel(train, test, thread_num=1) model_set.add_model(["YourModelName"]) # Edit the settings of your model your_model = model_set.models["YourModelName"] your_model.alpha = 0.5 # Run model to predict occupancy level model_set_results = model_set.run_all_model() print(model_set_results)